Abstract
We analyze $2+1d$ and $3+1d$ Bosonic Symmetry Protected Topological (SPT) phases of matter protected by onsite symmetry group $G$ by using dual bulk and boundary approaches. In the bulk we study an effective field theory which upon coupling to a background flat $G$ gauge field furnishes a purely topological response theory. The response action evaluated on certain manifolds, with appropriate choice of background gauge field, defines a set of SPT topological invariants. Further, SPTs can be gauged by summing over all isomorphism classes of flat $G$ gauge fields to obtain Dijkgraaf-Witten topological $G$ gauge theories. These topological gauge theories can be ungauged by first introducing and then proliferating defects that spoils the gauge symmetry. This mechanism is related to anyon condensation in $2+1d$ and condensing bosonic gauge charges in $3+1d$. In the dual boundary approach, we study $1+1d$ and $2+1d$ quantum field theories that have $G$ 't-Hooft anomalies that can be precisely cancelled by (the response theory of) the corresponding bulk SPT. We show how to construct/compute topological invariants for the bulk SPTs directly from the boundary theories. Further we sum over boundary partition functions with different background gauge fields to construct $G$-characters that generate topological data for the bulk topological gauge theory. Finally, we study a $2+1d$ quantum field theory with a mixed $\mathbb{Z}_2^{T/R} \times U(1)$ anomaly where $\mathbb{Z}_2^{T/R}$ is time-reversal/reflection symmetry, and the $U(1)$ could be a 0-form or 1-form symmetry depending on the choice of time reversal/reflection action. We briefly discuss the bulk effective action and topological response for a theory in $3+1d$ that cancels this anomaly. This signals the existence of SPTs in $3+1d$ protected by 0,1-form $U(1)\times \mathbb{Z}_{2}^{T,R}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.