Abstract
In superlattices of twisted semiconductor monolayers, tunable moiré potentials emerge, trapping excitons into periodic arrays. In particular, spatially separated interlayer excitons are subject to a deep potential landscape and they exhibit a permanent dipole providing a unique opportunity to study interacting bosonic lattices. Recent experiments have demonstrated density-dependent transport properties of moiré excitons, which could play a key role for technological applications. However, the intriguing interplay between exciton-exciton interactions and moiré trapping has not been well understood yet. In this work, we develop a microscopic theory of interacting excitons in external potentials allowing us to tackle this highly challenging problem. We find that interactions between moiré excitons lead to a delocalization at intermediate densities, and we show how this transition can be tuned via twist angle and temperature. The delocalization is accompanied by a modification of optical moiré resonances, which gradually merge into a single free exciton peak.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.