Abstract
We investigate the role of disorder on the various topological magnonic phases present in deformed honeycomb ferromagnets. To this end, we introduce a bosonic Bott index to characterize the topology of magnon spectra in finite, disordered systems. The consistency between the Bott index and Chern number is numerically established in the clean limit. We demonstrate that topologically protected magnon edge states are robust to moderate disorder and, as anticipated, localized in the strong regime. We predict a disorder-driven topological phase transition, a magnonic analog of the "topological Anderson insulator" in electronic systems, where the disorder is responsible for the emergence of the nontrivial topology. Combining the results for the Bott index and transport properties, we show that bulk-boundary correspondence holds for disordered topological magnons. Our results open the door for research on topological magnonics as well as other bosonic excitations in finite and disordered systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.