Abstract

We perform molecular-dynamics simulations of the vibrational and elastoplastic properties of polymeric glasses and crystals and the corresponding atomic systems. We evidence that the elastic scaling of the density of states in the low-frequency boson peak (BP) region is different in crystals and glasses. Also, we see that the BP of the polymeric glass is nearly coincident with the one of the atomic glasses, thus revealing that the former-unlike the elasticity-is controlled by nonbonding interactions only. Our results suggest that the interpretation of the BP in terms of the macroscopic elasticity, discussed in highly connected systems, does not hold for systems with low connectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.