Abstract

A new boson expansion theory based on the random phase approximation is presented. The boson expansions are derived here directly in the random phase approximation representation with the help of a technique that combines the use of the Usui operator with that of a new bosonization procedure, called the term-by-term bosonization method. The present boson expansion theory is constructed by retaining a single collective quadrupole random phase approximation component, a truncation that allows for a perturbative treatment of the whole problem. Both Hermitian, as well as non-Hermitian boson expansions, valid for even nuclei, are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.