Abstract

It is known that for each matrix W i and it's transpose t W i in any four-weight spin model (X, W 1, W 2, W 3, W 4; D), there is attached the Bose-Mesner algebra of an association scheme, which we call Nomura algebra. They are denoted by N(W i ) and N( t W i ) = N′(W i ) respectively. H. Guo and T. Huang showed that some of them coincide with a self-dual Bose-Mesner algebra, that is, N(W 1) = N′(W 1) = N(W 3) = N′(W 3) holds. In this paper we show that all of them coincide, that is, N(W i ), N′(W i ), i=1, 2, 3, 4, are the same self-dual Bose-Mesner algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.