Abstract

We study a one-dimensional disordered Bose fluid using bosonization, the replica method, and a nonperturbative functional renormalization-group approach. We find that the Bose-glass phase is described by a fully attractive strong-disorder fixed point characterized by a singular disorder correlator whose functional dependence assumes a cuspy form that is related to the existence of metastable states. At nonzero momentum scale k, quantum tunneling between the ground state and low-lying metastable states leads to a rounding of the cusp singularity into a quantum boundary layer (QBL). The width of the QBL depends on an effective Luttinger parameter K_{k}∼k^{θ} that vanishes with an exponent θ=z-1 related to the dynamical critical exponent z. The QBL encodes the existence of rare "superfluid" regions, controls the low-energy dynamics, and yields a (dissipative) conductivity vanishing as ω^{2} in the low-frequency limit. These results reveal the glassy properties (pinning, "shocks," or static avalanches) of the Bose-glass phase and can be understood within the "droplet" picture put forward for the description of glassy (classical) systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.