Abstract

A generic class of scalar active matter, characterized at the mean field level by the diffusivity vanishing above some threshold density, was recently introduced [Golestanian R 2019 Phys. Rev. E 100 010601(R)]. In the presence of harmonic confinement, such ‘diffusivity edge’ was shown to lead to condensation in the ground state, with the associated transition exhibiting formal similarities with Bose–Einstein condensation (BEC). In this work, the effect of a diffusivity edge is addressed in a periodic potential in arbitrary dimensions, where the system exhibits coexistence between many condensates. Using a generalized thermodynamic description of the system, it is found that the overall phenomenology of BEC holds even for finite energy barriers separating each neighbouring pair of condensates. Shallow potentials are shown to quantitatively affect the transition, and introduce non-universality in the values of the scaling exponents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.