Abstract

Multiply-connected traps for cold, neutral atoms fix vortex cores of quantum gases. Laguerre–Gaussian laser modes are ideal for such traps due to their phase stability. We report theoretical calculations of the Bose–Einstein condensation transition properties and thermal characteristics of neutral atoms trapped in multiply connected geometries formed by Laguerre–Gaussian (LG p l ) beams. Specifically, we consider atoms confined to the anti-node of a LG 0 1 laser mode detuned to the red of an atomic resonance frequency, and those confined in the node of a blue-detuned LG 1 1 beam. We compare the results of using the full potential to those approximating the potential minimum with a simple harmonic oscillator potential. We find that deviations between calculations of the full potential and the simple harmonic oscillator can be up to 3%–8% for trap parameters consistent with typical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.