Abstract

A mobile impurity coupled to a weakly interacting Bose gas, a Bose polaron, displays several interesting effects. While a single attractive quasiparticle is known to exist at zero temperature, we show here that the spectrum splits into two quasiparticles at finite temperatures for sufficiently strong impurity-boson interaction. The ground state quasiparticle has minimum energy at T_{c}, the critical temperature for Bose-Einstein condensation, and it becomes overdamped when T≫T_{c}. The quasiparticle with higher energy instead exists only below T_{c}, since it is a strong mixture of the impurity with thermally excited collective Bogoliubov modes. This phenomenology is not restricted to ultracold gases, but should occur whenever a mobile impurity is coupled to a medium featuring a gapless bosonic mode with a large population for finite temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.