Abstract

We demonstrate that a topology-induced Bose-Einstein condensation (BEC) takes place in a complex network. As a model topology, we consider the deterministic Apollonian network which exhibits scale-free, small-world, and hierarchical properties. Within a tight-binding approach for noninteracting bosons, we report that the BEC transition temperature and the gap between the ground and first excited states follow the same finite-size scaling law. An anomalous density dependence of the transition temperature is reported and linked to the structure of gaps and degeneracies of the energy spectrum. The specific heat is shown to be discontinuous at the transition, with low-temperature modulations as a consequence of the fragmented density of states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.