Abstract

Bose-Einstein condensation in semiconductors is controlled by the nonelementary-boson nature of excitons. Pauli exclusion between the fermionic components of composite excitons produces dramatic exchange couplings between bright and dark states. In microcavities, where bright excitons and photons form polaritons, they force the condensate to be linearly polarized, as observed. In bulk, they also force linear polarization, but of dark states, due to interband Coulomb scatterings. To evidence this dark condensate, indirect processes are thus needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call