Abstract

In this paper we consider solutions of a nonlinear Schrodinger equation with a parabolic and a periodic potential motivated from the dynamics of Bose-Einstein condensates. Our starting point is the corresponding linear problem which we analyze through regular perturbation and homogenization techniques. We then use Lyapunov-Schmidt theory to establish the persistence and bifurcation of the linear states in the presence of attractive and repulsive nonlinear inter-particle interactions. Stability of such solutions is also examined and a count is given of the potential real, complex and imaginary eigenvalues with negative Krein signature that such solutions may possess. The results are corroborated with numerical computations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call