Abstract

A Bose–Einstein condensate was achieved in a stable magnetic trap on a persistent-supercurrent atom chip with a superconducting closed-loop circuit. We determined precisely the shape of the magnetic trapping potential by systematically controlling the persistent supercurrent. The condensation was verified by time-of-flight imaging and by atom number decay measurements. The measured decay rates agreed quantitatively with numerical simulations on the three-body loss process assuming all of the atoms to be a condensate. We also discuss the feasibility of creating a quasi-one-dimensional Bose gas on our atom chip.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.