Abstract

Using two crossed 1064-nm optical-dipole-trap lasers to be the Raman beams, an effective vector gauge potential for Bose-Einstein condensed ${}^{87}$Rb in the $F=2$ hyperfine ground state is experimentally created. The moderate strength of the Raman coupling still can be achieved when the detuning from atomic resonance is larger than the excited-state fine structure, since rubidium has 15 nm energy-level spitting. The atoms at the far detuning of the Raman coupling are loaded adiabatically into the dressed states by ramping the homogeneous bias magnetic field with different paths and the dressed states with different energies are studied experimentally. The experimental scheme can be easily extended to produce the synthetic magnetic or electric field by means of a spatial or time dependence of the effective vector potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.