Abstract

We study the relativistic field theory of a charged spin-zero boson field in the presence of an external field, such as the Coulomb field of a prescribed charge distribution. It is shown that for a sufficiently intense field the ground state is unstable against the formation of a Bose-Einstein condensate of charged boson pairs. A consistent quantum theory can be formulated when known nonlinear couplings such as the Coulomb interactions of the bosons are properly included in the Hamiltonian. Speculations are offered concerning the possible stability of nuclei with charge number $Z\ensuremath{\gtrsim}{10}^{3}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.