Abstract

Tautomerism, a particular case of isomerism, plays an important role in modern organic chemistry, biochemistry, medicinal chemistry, pharmacology, and molecular biology. Inconsistency between results of complex energy computation methods Gn/CBS (G2, G3, CBS-4M, and CBS-QB3) and high-level ab initio/DFT ones (CCSD(T)/CBS, MP2/CBS, and B3LYP/aug-cc-pVTZ) is found. Gn/CBS methods provide a qualitatively different description of tautomeric (keto-enol) equilibrium in 2-substituted acetaldehydes. According to valence focal point analysis (FPA) based on CCSD(T)/aug-cc-pVTZ, MP3/aug-cc-pVQZ, and MP2/aug-cc-pV5Z energies, boryl substitution of acetaldehyde makes it an enol. In other words, enol was found to be the global minimum on the potential energy surface (PES) of C(2)H(5)BO. Gn/CBS methods predict the keto form to be the minimum. The relative energy of alkenol, CH(BH(2))=CH(OH), is calculated to be -1.67 +/- 0.82 kcal mol(-1) at CCSD(T)/CBS level of theory. Hydrogen shift effects are also calculated in two other 2-substituted acetaldehydes, namely, 3-oxopropanenitrile (C(3)H(3)NO) and ethanal (C(2)H(4)O), with a general formula of XH(2)C-CHO (X = BH(2), CN, and H). Electron density (charge) transfer between the C=C double bond and the free p orbital of the boron atom (B) in a boryl group (BH(2)) greatly stabilizes enol with respect to ketone, CH(2)(BH(2))-CHO. The first known stabilization of enol in an acetaldehyde derivative, without an intramolecular hydrogen bond (H-bond), questions the accuracy of complex energy computation methods for boron-containing molecules. The possible reasons and consequences of this finding are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.