Abstract

A new strategy for the direct cleavage of the C(sp3)-OH bond has been developed via activation of free alcohols with neutral diphenyl boryl radical generated from sodium tetraphenylborate under mild visible light photoredox conditions. This strategy has been verified by cross-electrophile coupling of free alcohols and carbon dioxide for the synthesis of carboxylic acids. Direct transformation of a range of primary, secondary, and tertiary benzyl alcohols to acids has been achieved. Control experiments and computational studies indicate that activation of alcohols with neutral boryl radical undergoes homolysis of the C(sp3)-OH bond, generating alkyl radicals. After reducing the alkyl radical into carbon anion under photoredox conditions, the following carboxylation with CO2 affords the coupling product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.