Abstract

Chemodynamic therapy (CDT), an emerging tumor-specific therapeutic modality, is frequently restrained by insufficient intratumoral Fenton catalysts and increasingly inefficient catalysis caused by the continuous consumption of limited H2O2 within tumors. Herein, we engineered a pH-responsive bortezomib (BTZ) polymer prodrug catalytic nanoreactor (HeZn@HA-BTZ) capable of self-supplying Fenton catalyst and H2O2. It is aimed for tumor-specific chemo/chemodynamic therapy via oxidative stress and endoplasmic reticulum (ER) stress dual-amplification and macrophage repolarization. A catechol‑boronate bond-based hyaluronic acid-BTZ prodrug HA-DA-BTZ was modified on Hemin and Zn2+ coordination nanoscale framework (HeZn), an innovative CDT inducer, to construct He-Zn@HA-BTZ. He-Zn@HA-BTZ with good stability and superior peroxidase-like activity preferentially accumulated at tumor sites and be actively internalized by tumor cells. Under the cleavage of catechol‑boronate bond in acidic endo/lysosomes, pre-masked BTZ was rapidly released to induce ubiquitinated protein aggregation, robust ER stress and elevated H2O2 levels. The amplified H2O2 was further catalyzed by HeZn via Fenton-catalytic reactions to produce hypertoxic •OH, enabling cascaded oxidative stress amplification and long-lasting effective CDT, which in turn aggravated BTZ-induced ER stress. Eventually, a dual-amplification of oxidative stress and ER stress was achieved to initiate cell apoptosis/necrosis with reduced BTZ toxicity. Intriguingly, He-Zn@HA-BTZ could repolarize macrophages from M2 to antitumor M1 phenotype for potential tumor therapy. This "all in one" prodrug nanocatalytic reactor not only enriches the CDT inducer library, but provides inspirational strategy for simultaneous oxidative stress and ER stress based excellent cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.