Abstract

Multiple myeloma (MM) is a hematological neoplasm for which different chemotherapy treatments are used with several drugs in combination. One of the most frequently used drugs for the treatment of MM is the proteasome inhibitor bortezomib. Patients treated with bortezomib are at increased risk for thrombocytopenia, neutropenia, gastrointestinal toxicities, peripheral neuropathy, infection, and fatigue. This drug is almost entirely metabolized by cytochrome CYP450 isoenzymes and transported by the efflux pump P-glycoprotein. Genes encoding both enzymes and transporters involved in the bortezomib pharmacokinetic pathway are highly polymorphic. The response to bortezomib and the incidence of adverse drug reactions (ADRs) vary among patients, which could be due to interindividual variations in these possible pharmacogenetic biomarkers. In this review, we compiled all pharmacogenetic information relevant to the treatment of MM with bortezomib. In addition, we discuss possible future perspectives and the analysis of potential pharmacogenetic markers that could influence the incidence of ADR and the toxicity of bortezomib. It would be a milestone in the field of targeted therapy for MM to relate potential biomarkers to the various effects of bortezomib on patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call