Abstract

Abstract Let X and Y be pathwise connected and paracompact Hausdorff spaces equipped with free involutions T : X → X {T:X\to X} and S : Y → Y {S:Y\to Y} , respectively. Suppose that there exists a sequence ( X i , T i ) ⁢ ⟶ h i ⁢ ( X i + 1 , T i + 1 ) for ⁢ 1 ≤ i ≤ k , (X_{i},T_{i})\overset{h_{i}}{\longrightarrow}(X_{i+1},T_{i+1})\quad\text{for }% 1\leq i\leq k, where, for each i, X i {X_{i}} is a pathwise connected and paracompact Hausdorff space equipped with a free involution T i {T_{i}} , such that X k + 1 = X {X_{k+1}=X} , and h i : X i → X i + 1 {h_{i}:X_{i}\to X_{i+1}} is an equivariant map, for all 1 ≤ i ≤ k {1\leq i\leq k} . To achieve Borsuk–Ulam-type theorems, in several results that appear in the literature, the involved spaces X in the statements are assumed to be cohomological n-acyclic spaces. In this paper, by considering a more wide class of topological spaces X (which are not necessarily cohomological n-acyclic spaces), we prove that there is no equivariant map f : ( X , T ) → ( Y , S ) {f:(X,T)\to(Y,S)} and we present some interesting examples to illustrate our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.