Abstract
We investigate droplet formation in three-component ultracold bosons. In particular, we identify the formation of a Borromean droplet, where only the ternary bosons can form a self-bound droplet while any binary subsystems cannot, as the first example of Borromean binding due to a collective many-body effect. Its formation is facilitated by an additional attractive force induced by the density fluctuation of a third component, which enlarges the mean-field collapse region in comparison to the binary case and renders the formation of a Borromean droplet after incorporating the repulsive force from quantum fluctuations. Outside the Borromean regime, we demonstrate an interesting phenomenon of droplet phase separation due to the competition between ternary and binary droplets. We further show that the transition between different droplets and gas phase can be conveniently tuned by boson numbers and interaction strengths. The study reveals the rich physics of a quantum droplet in three-component boson mixtures and sheds light on the more intriguing many-body bound state formed in multicomponent systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.