Abstract

Simple SummaryBorreliae are spirochaetes, which represent a heterogeneous phylum within bacteria. Spirochaetes are indeed distinguished from other bacteria for their spiral shape, which also characterizes Borreliae. This review describes briefly the organization of the phylum Spirocheteales with a digression about its pathogenicity and historical information about bacteria isolation and characterization. Among spirochaetes, Borrelia genus is here divided into three groups, namely the Lyme group (LG), the Echidna-Reptile group (REPG) and the Relapsing Fever group (RFG). Borreliae Part 1 deals with Lyme group and Echidna-Reptile group Borreliae, while the subject of Borreliae Part 2 is Relapsing Fever group and unclassified Borreliae. Lyme group Borreliae is organized here in sections describing ecology, namely tick vectors and animal hosts, epidemiology, microbiology, and Borrelia genome organization and antigen characterization. Furthermore, the main clinical manifestations in Lyme borreliosis are also described. Although included in the Lyme group due to their particular clinical features, Borrelia causing Baggio Yoshinari syndrome and Borrelia mayonii are described in dedicated paragraphs. The Borrelia Echidna-Reptile group has been recently characterized including spirochaetes that apparently are not pathogenic to humans, but infect reptiles and amphibians. The paragraph dedicated to this group of Borreliae describes their vectors, hosts, geographical distribution and their characteristics.Borreliae are divided into three groups, namely the Lyme group (LG), the Echidna-Reptile group (REPG) and the Relapsing Fever group (RFG). Currently, only Borrelia of the Lyme and RF groups (not all) cause infection in humans. Borreliae of the Echidna-Reptile group represent a new monophyletic group of spirochaetes, which infect amphibians and reptiles. In addition to a general description of the phylum Spirochaetales, including a brief historical digression on spirochaetosis, in the present review Borreliae of Lyme and Echidna-Reptile groups are described, discussing the ecology with vectors and hosts as well as microbiological features and molecular characterization. Furthermore, differences between LG and RFG are discussed with respect to the clinical manifestations. In humans, LG Borreliae are organotropic and cause erythema migrans in the early phase of the disease, while RFG Borreliae give high spirochaetemia with fever, without the development of erythema migrans. With respect of LG Borreliae, recently Borrelia mayonii, with intermediate characteristics between LG and RFG, has been identified. As part of the LG, it gives erythema migrans but also high spirochaetemia with fever. Hard ticks are vectors for both LG and REPG groups, but in LG they are mostly Ixodes sp. ticks, while in REPG vectors do not belong to that genus.

Highlights

  • Borrelia species belong to the Spirochaetaceae family, they have the characteristic spirochaete shape

  • The subdivision of the spirochetes makes use of phylogenetic analyses based on chained sequences, and the identification of conserved signature indel (CSI), of which 38 are specific for all members of the phylum Spirochaetes, and another 16 CSI are specific for the genus Borrelia [1]

  • Ixodes ticks are essential in the transmission of Lyme borreliosis (LB), but they can transmit other infectious agents in humans such as viruses [84], Borrelia of the relapsing fever (RF) (Borrelia miyamotoi) [85], intracellular bacteria (Anaplasma/Ehrlichia, Rickettsia, Bartonella sp.) and Protozoa (Babesia sp.), which can be included in the Lyme disease coinfections [86]

Read more

Summary

Introduction

Borrelia species belong to the Spirochaetaceae family, they have the characteristic spirochaete (spiral) shape. Spirochaetes cause many important diseases in humans, including syphilis and Lyme disease. Except that they contain distinctive endoflagella, no other specific molecular or biochemical characteristics are currently known for all Spirochaetes or its different families. The subdivision of the spirochetes makes use of phylogenetic analyses based on chained sequences, and the identification of conserved signature indel (CSI), of which 38 are specific for all members of the phylum Spirochaetes, and another 16 CSI are specific for the genus Borrelia [1]

Phylum Spirochaetes
Pathogenicity of Phylum Spirochaetes
Spirochetosis from the Clinic to Culture Isolation
Borreliaceae Family
Cristispira Genus
Borrelia Genus
Ecology
Ticks Vector of BL Group
Reservoir and Occasional Hosts
Epidemiology
Microbiology
Genome of Borrelia Lyme Group
Flagellum
Heat Shock Proteins
Other Proteins
Antigenic Heterogenecity of Borrelia burgdorferi
Species of Borreliae Lyme Group
Clinic
Borrelia Lyme Group with High Spirochaetemia—Borrelia mayonii
Clinical and Microbiological Characteristics
Vectors and Reservoirs
Genome
Clinical Manifestations
Borrelia Echidna-Reptile Group
Borrelia turcica
Findings
Borrelia Tachyglossi
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call