Abstract

Lyme disease is caused by infection with the spirochete Borrelia burgdorferi and is characterized by bacterial persistence and inflammation of many host tissues. B. burgdorferi express outer surface lipoproteins, including OspA, with inflammatory properties that could contribute to the localized tissue inflammation. Neutrophils are the predominant infiltrate into the inflamed arthritic joints, and are crucial for controlling the spirochete infection. They may also contribute to the joint pathology associated with Lyme arthritis. This study examines the effect of OspA on the activities of the neutrophil. Picomolar concentrations of OspA induce surface markers associated with neutrophil activation: increased CD10 and CD11b expression; decreased CD62-L expression; and an increased adherence to extracellular matrix. These events were similar in kinetics and magnitude to those induced by the strong activators LPS and FMLP. Like LPS, OspA could prime neutrophils for FMLP-induced release of lysosomal granules and production of superoxide. Thus, models of Lyme arthritis should include the possible contribution of direct activation of neutrophils to both defense and disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call