Abstract

Colonization of a localized area of human skin by Borrelia burgdorferi after a bite from an infected tick is the first step in the development of Lyme disease. The initial interaction between the pathogen and the human host cells is suggested to impact later outcomes of the infection. MicroRNAs (miRNAs) are well known to be important regulators of host inflammatory and immune responses. While miRNAs have been shown to play a role in the inflammatory response to B. burgdorferi at late stages of infection in the joints, the contributions of miRNAs to early B. burgdorferi infection have yet to be explored. To address this knowledge gap, we used the published host transcriptional responses to B. burgdorferi in erythema migrans skin lesions of early Lyme disease patients and a human dermal fibroblasts (HDFs)/B. burgdorferi co-culture model to predict putative upstream regulator miRNAs. This analysis predicted a role for miR146a-5p in both, B. burgdorferi-infected skin and -stimulated HDFs. miR146a-5p was confirmed to be significantly upregulated in HDF stimulated with B. burgdorferi for 24 hours compared to uninfected control cells. Furthermore, manipulation of miR146a-5p expression (overexpression or inhibition) altered the B. burgdorferi driven inflammatory profile of HDF cells. Our results suggest that miR146a-5p is an important upstream regulator of the transcriptional and immune early response to early B. burgdorferi infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.