Abstract

A classic proinflammatory T helper cell type 1 (TH1) response directed against intracellular pathogens includes the cytokine osteopontin, which acts predominantly on macrophages, where it induces the secretion of interleukin (IL)-12 and suppresses the secretion of IL-10. As cell-mediated immune responses play an important role in the resistance to Lyme arthritis, a manifestation of infection by the extracellular pathogen Borrelia burgdorferi, we tested the hypothesis that osteopontin may be required to induce T(H)1 responses and inflammation. The role of osteopontin was tested in vivo and using ex vivo macrophages in B6129F3 mice susceptible to experimental Lyme arthritis. Mice of this genetic background and those fully backcrossed to C57BL/6, which lacked osteopontin expression (spp1-/-), were as susceptible to B. burgdorferi-induced arthritis as littermate controls. Furthermore, equal numbers of spirochetes, as measured by quantitative polymerase chain reaction of the B. burgdorferi gene recA in spp1-/- and B6129F3 wild-type littermates, suggested that susceptibility to infection was not dependent on this cytokine. Neither of the B6129F3 parental mouse strains lacked the ability to secrete osteopontin. spp1-/- mice and controls had immunoglobulin G2 titers, suggestive of a TH1 response. B. burgdorferi was able to directly stimulate the secretion of the proinflammatory cytokines IL-12 and tumor necrosis factor alpha from wild-type and spp1-/- macrophages alike. These results indicate that the usually critical role of osteopontin in the induction of cellular immune responses to intracellular pathogens was circumvented by the ability of the extracellular pathogen B. burgdorferi to induce macrophages directly to produce proinflammatory cytokines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call