Abstract
Herein we report the synthesis of transition-metal-free potassium borophosphate glasses and their application as bactericidal and bacteriostatic material. The antimicrobial activity was achieved through a simple change in the molar ratio of boron and phosphorus atoms, making borophosphate glass soluble in water. The glasses were analyzed by X-ray powder diffraction, Raman spectroscopy, laser-induced breakdown spectroscopy, and water absorption. The addition of a boron compound is required to obtain potassium-based phosphate glasses. Moreover, the change in the phosphorus and boron molar ratio (P/B), 2, 1 or 0.5 affects the glass solubilization in water, which increases with the phosphorus content. The glass materials were submitted to tests of biological activity against the bacteria Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. These water-soluble borophosphate glasses were employed in the development of hydrogel formulations using Carbopol®. Phosphorous-rich samples at a concentration of 15 % (w/w) in hydrogel showed better antimicrobial activity against S. aureus and E. coli, when compared to other samples, including commercial alcohol hand sanitizer gel, with an average size of the inhibition halo of 24.02±1.43 and 19.24±1.63mm, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.