Abstract

In two-dimensional (2D) borophene, the structural transition from triangular lattice to hexagonal lattice with an increase in vacancy concentration is a basic principle of constructing various borophene isomers. Here, by performing an extensive structural search of 4239 borophene isomers with both hexagonal holes (HHs) and large holes (LHs), we show that the structural transformation from triangular lattice to borophene with large holes is energetically more favorable. Borophene isomers with LHs are more stable than those with only HHs at high vacancy concentrations (>20%) and are just slightly less stable than those with only HHs at low vacancy concentrations. This discovery greatly expands the family of 2D borophene and opens a route for synthesizing new borophene isomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.