Abstract

Superhalogenity refers to the tendency of radicals to have higher electron affinity (EA) than halogens or anions to possess higher vertical detachment energy (VDE) than do halides (3.64 eV). In Srivastava, A. K. J. Phys. Chem. A 2023, 127, 4867-4872, we demonstrated a simple strategy in which some polycyclic hydrocarbons (PHs) can be turned into polycyclic superhalogens (PSs) by substituting CN groups in the place of hydrogens. We also notice that the superhalogenity of cyanide-based PSs is related to their aromaticity. Boronyl (BO) is an isoelectronic and inorganic analog of the cyano (CN) group. Therefore, we consider the substitution of BO in PHs and compare them with CN-based PSs using the density functional theory. In the case of C5H5-, we notice that the B3LYP and CCSD(T) calculated VDEs of resulting C5H5-n(BO)n- anions increase with the increase in the number of BO substituents (n) such that they become superhalogens for n ≥ 3 like C5H5-n(CN)n- anions. However, their aromaticity does not correspond to the superhalogenity, unlike C5H5-n(CN)n-. Similarly, all BO-substituted PHs possess structures similar to their CN analogs. Although their aromaticity is reduced compared to CN-based anions, the VDE of all these BO-based polycyclic anions and the EA of their radicals exceed 5 eV than those of the corresponding CN-based PSs. Therefore, this study proposes a new class of boronyl-based polycyclic superhalogens. These superhalogen anions might attract synthetic chemists and experimentalists for further explorations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call