Abstract

Studying functional protein delivery into live cells is important, ranging from fundamental research to therapeutics. Cell-penetrating peptides (CPPs) are known to deliver proteins with applauded efficacy and have gained importance for applications in protein therapeutics and exploration of versatile cellular mechanisms. The primary aim of the work is to design a CPP as a tool and delivery vehicle for macromolecules, including proteins. In this work, boronic acid-linked cyclic deca arginine (cR10) is reported as an efficient CPP that exhibited 3-fold higher delivery of chemically synthesized ubiquitin (Ub) than pristine cR10-linked Ub, examined with live U2OS cells. As a futuristic plan, an artificial intelligence machine learning-based rationale has been designed and proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.