Abstract

Most biomaterial surfaces are non-functional, which inevitably requires additional functionalization steps. However, these steps are typically material-dependent; only a few limited methods, such as catechol functionalization using polydopamine coating, have been reported as material-independent for surface modification. In this study, we developed a one-step boronic acid surface functionalization method utilizing a polyacrylate that contains both butyl and boronic acid groups. The butyl group exhibits strong interfacial adhesion due to its low glass transition temperature (Tg), which maintains its softness and tackiness, thereby facilitating attachment to various substrates. Meanwhile, the boronic acid acts as a functional group for surface modification. Various substrates, including polymers, metals, and ceramics widely used in implants, were successfully coated with the polyacrylate, bestowing boronic acid functionality on the surface. Given that boronic acid is one of the most widely applied functional groups in the biomaterials field, we anticipate that our methodology will be applicable in developing various biomedical applications such as antifouling coatings, biosensors, and bioadhesives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.