Abstract

An electrochemical aptasensor for detecting trace aflatoxin B1 (AFB1) is designed and fabricated consisting of aptamers and gold nanoparticles on conductive boron-doped diamond (BDD) electrode. By examining the relative impedance shift from electrochemical impedance spectroscopy as a function of AFB1 concentration, the low detection limit (wide linear relationship range) of the aptasensor is realized to be 5.5 × 10−14 mol L−1 (1.0 × 10−13‒1.0 × 10−8 mol L−1). The variation in impedance property of the aptasensor is determined by the specific adsorption of AFB1 molecules to the aptamer at a certain concentration covering the electrode. By means of multiple characteristic processes, it is demonstrated that the constructed aptasensor is favorable for testing the trace AFB1 with high specificity, sensitivity, stability, repeatability, and reusability, which lead to a possibility to achieve high performance biosensor for practical application to quantitatively detract trace AFB1 in environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call