Abstract

An atmospheric pressure, solution-assisted substitution process has been developed to produce boron-doped carbon nanotubes (BCNTs) with tunable boron dopant concentrations precisely from atomic percent of 0.4–3.9% by controlling the reaction conditions. The systematic material characterizations and detailed electrochemical sensor applications were studied. The electrochemical detection of dopamine (DA) can be improved by the enhanced electrocatalytic activity and reduced electron transfer resistance of BCNTs due to the boron doping. The effects of boron dopant concentrations on the electrocatalytic activity and electron transfer resistance of the BCNTs were investigated thoroughly in this study. It was found experimentally that the anodic peak current density (ipa) of DA is the highest (169.6±8.9μAcm−2) on the BCNTs (B 2.1 at.%) modified screen printed carbon electrode (SPCE). In this study, we have successfully developed a highly efficient and tunable synthesis of BCNTs in bulk quantities as the potential electrocatalysts for DA oxidation reaction. Also, it is noteworthy from a practical point of view that the developed atmospheric-pressure BCNTs synthesis method is amenable to industrial-scale production since it avoids the need for a vacuum system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.