Advanced Healthcare Materials
Read

Boronate Building Blocks for Intracellular Protein Delivery

Publication Date Nov 20, 2022

Abstract

Intracellular protein delivery plays a critical role in the development of biotherapeutics and biotechnologies, yet it is hampered by a number of factors including protein binding, cellular uptake, endosomal escape, and protein release. Boronate building blocks, which are frequently employed to create effective protein delivery systems, have shown significant promise in overcoming these limitations thanks to their versatile reactivities and stimuli-responsive property. Boronate ligands transport conjugated proteins into the cytosol via receptor-mediated endocytosis by forming reversible boronate disaster bonds with carbohydrates like sialic acid on the cell surface. Additionally, boronate modification gives cargo proteins extra binding sites for forming complexes with nanocarriers. After internalization, boronate-tagged proteins are released from their carriers in response to endolysosomal acidity, reactive oxygen species, and adenosine triphosphate, and sometimes transport into the nucleus via the importin α/β pathway. Besides, boronate ligands are directly decorated on nanocarriers to enhance their binding affinity to native proteins via nitrogen-boron coordination. Owing to these promising features, various supramolecular and dynamic nanoassemblies are constructed based on boronate building blocks for efficient intracellular protein delivery.

Concepts

Intracellular Protein Delivery Development Of Biotherapeutics Stimuli-responsive Property Intracellular Delivery Boronate Ligands Endosomal Escape Adenosine Triphosphate Protein Delivery Receptor-mediated Endocytosis Efficient Protein Delivery

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023

R DiscoveryJan 30, 2023
R DiscoveryArticles Included:  3

Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.