Abstract

X-ray single crystal (XSC) and neutron powder diffraction data (NPD) were used to elucidate boron site preference for five ternary phases. Ta3Si1−xBx (x=0.112(4)) crystallizes with the Ti3P-type (space group P42/n) with B-atoms sharing the 8g site with Si atoms. Ta5Si3−x (x=0.03(1); Cr5B3- type) crystallizes with space group I4/mcm, exhibiting a small amount of vacancies on the 4a site. Both, Ta5(Si1−xBx)3, x=0.568(3), and Nb5(Si1−xBx)3, x=0.59(2), are part of solid solutions of M5Si3 with Cr5B3-type into the ternary M–Si–B systems (M=Nb or Ta) with B replacing Si on the 8h site. The D88-phase in the Nb–Si–B system crystallizes with the Ti5Ga4-type revealing the formula Nb5Si3B1−x (x=0.292(3)) with B partially filling the voids in the 2b site of the Mn5Si3 parent type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.