Abstract

High boron (B) levels in oil and gas produced waters prevent its beneficial reuse as irrigation water without proper treatment. Aluminum (Al) electrocoagulation (EC) is a promising technology for B removal, but further research and development is needed to optimize EC for use in removing B from produced waters. To this end, B removal by adsorption onto insoluble aluminum hydroxide solids, generated by EC in simulated brines (up to 50,000 mg/L NaCl) and real oilfield produced waters, was studied. B removal during EC was greater than when aluminum hydroxide solids formed by EC were subsequently exposed to B containing solutions. Working parameters affecting B removal during the EC process, including current, total dissolved solid (TDS), temperature, pH, scale-forming cations and organic matter, were investigated to explore ways to achieve higher B removal. Boron removal increased with increased current loading and time, and with the concomitant increased Al solids concentration. However, too high a current loading limited B removal because of a change in the structure of the aluminum hydroxide solids. Higher TDS decreased B removal slightly, but lower TDS concentrations limited the use of higher current loadings. Temperature increased during EC treatment, particularly at higher current loadings, and this inhibited B removal due to an accelerated aggregation of amorphous Al solids into larger, denser, and presumably more crystalline particles. The best B removal occurred at pH 8, corresponding to a slightly positive zeta potential for aluminum hydroxide and a small but significant fraction of negatively charged B species. Scale-forming cations such as Ba2+ and Sr2+ had no obvious effect on the EC process. The presence of high concentrations of Mg2+ and Ca2+ resulted in low bulk pH values during the EC process and greater formation of solid products, but B removal did not decrease during a pH-controlled (pH = 8) EC process with these divalent cations present. Two produced water samples collected from oilfields in Kansas, US were treated using EC for 1 h, resulting in up to ~70 % B removal from solution with a current loading of 6.67 A/L, and up to 78 % with 13.33 A/L.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call