Abstract

Significant decrease of boron concentration during seawater desalination is one of the more difficult, consuming and expensive tasks. Average boron concentration in the Mediterranean Sea is 4 mg/l, and due to heavy use of wastewater in irrigation the Israeli Water Authority (Ministry of Health) demands boron reduction to 0.4 mg/l maximum. The current boron removal procedure is based on two-pass reverse osmosis (RO) membrane treatment that requires pH adjustment to dissociate boric acid into borate ion. The operation is expensive, energy consuming and calls for cheaper and reliable alternatives. The current research was initiated to explore the abilities of electro-flocculation (EF) to remove boron from seawater. The EF experiments were performed under batch electro-chemical reactor conditions with iron electrodes. Settling time and pH of the solution were selected as two main independent parameters. The obtained results suggest that significant boron reduction can be achieved without membrane separation t...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call