Abstract

Biochar has been developed to activate persulfate for wastewater treatment due to its carbon essence, easily-available and low-cost. Efficiently active sites and interfacial electron transfer are highly desired for peroxydisulfate (PDS) activation. In this study, boronic ester structure and defect degree of boron-doped biochar are confirmed as activate sites to improve PDS activation. The performance of pollutants degradation is proven to have structure-activity relationships with both activate sites. Moreover, boron-doped biochar exhibits higher stability and oxidation potential by forming the surface-confined complex, promoting electron transfer from pollutants to complex. The optimized boron-doped biochar has the advantages of adapting to a broad pH range (2.9-10.0), strong resistance to Cl- and organic matters, a low activation energy of 11.22kJmol-1, and achieving the decomposition of practical dyeing wastewater. Our work provides a promising approach to regulating the interfacial catalytic sites of biochar by doping heteroatom for PDS activation in practical wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.