Abstract

Cylindrical and bamboo-like boron nitride nanotubes (BNNTs) have been used to reinforce brittle amorphous borosilicate glass matrix materials prepared by spark plasma sintering. The mechanical properties, such as hardness, Young's modulus, fracture toughness, and scratch resistance of the materials have been investigated. The fracture toughness of the composites showed an improvement of ∼30% compared to the pure amorphous glass. BNNTs pull-out, crack bridging, stretching, and crack deflection toughening mechanisms were observed in the reinforced glass matrix composites. Extensive pull-out of the BNNTs (>400 nm) was observed in the form of the telescopic “sword-in-sheath” mechanism, resulting in poor energy dissipation due to the weak Van der Waals force between the inner walls of the BNNTs. The scratch resistance was significantly improved (∼26%) after the addition of the BNNTs, and the results correspond well with the brittleness index of the materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.