Abstract

ObjectiveThe purpose of this study was to synthesize boron nitride nanosheets modified with zinc oxide nanoparticles (BNNSs/ZnO) and incorporate them as a novel inorganic filler to get an antibacterial dental resin composite. MethodsThe BNNSs/ZnO nanocomposites were synthesized via the hydrothermal method and characterized by Field Emission Scanning Electron Microscope (FESEM), Transmission Electron Microscopy (TEM), Energy Dispersive Spectrometer (EDS), X-ray Diffraction (XRD) and Fourier Transform-Infrared (FTIR) Spectroscopy. The BNNSs/ZnO or BNNSs were added into the experimental dental composite with different proportions, respectively. The mechanical and physical properties of the modified dental composite were evaluated. Their antibacterial activities were also assessed by quantitative analysis using Streptococcus mutans (S. mutans). ResultsThe BNNSs/ZnO nanocomposites were successfully synthesized, and the growth of ZnO nanoparticles (ZnO NPs) on boron nitride nanosheets was confirmed. The flexural strength (FS), flexural modulus (FM) and the compressive strength (CS) of all modified resin composites showed no change compared to the control group. The curing depth, degree of conversion, water absorption and solubility of the modified composites were still within the clinical requirement. The antibacterial rates of the modified composites were significantly increased compared to the control group, which can reach 98 % when 0.5 % BNNSs/ZnO was added. SignificanceThe modified dental resin composite with novel BNNSs or BNNSs/ZnO fillers shows significantly high antibacterial activity with suitable physicochemical and mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call