Abstract

Boron nitride nanoscrolls (BNSs) are open-ended, one-dimensional nanostructures made by the process of rolling boron nitride nanosheets into a scroll-like morphology. BNSs offer a high surface area to volume ratio and possess many unique properties (similar to carbon nanotubes, carbon nanoscrolls, and boron nitride nanotubes) such as high resistance to oxidation, chemical stability, increased lubrication, high-temperature resistance, electrical insulation, the ability to cap molecules inside and at the ends, and a wide bandgap regardless of chirality. Despite these attractive features and properties well suited for applications in biotechnology, energy storage, and electronics, the true potential of boron nitride and BNS as the next “miracle material” is yet to be fully explored. In this critical review, we assess, for the first time, various studies published on the formation and structural and dynamic characteristics of BNS; potential routes for BNS synthesis; and the toxicology of BNS. Finally, the future perspectives of BNS are discussed in view of its unique and exceptional candidacy for many (real-world) applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.