Abstract

Boron neutron capture therapy (BNCT) has a unique property of tumor-cell-selective heavy-particle irradiation. BNCT can form large dose gradients between cancer cells and normal cells, even if the two types of cells are mingled at the tumor margin. This property makes it possible for BNCT to be used for pre-irradiated locally recurrent tumors. Shallow-seated, locally recurrent lesions have been treated with BNCT because of the poor penetration of neutrons in the human body. BNCT has been used in clinical studies for recurrent malignant gliomas and head and neck cancers using neutron beams derived from research reactors, although further investigation is warranted because of the small number of patients. In the latter part of this review, the development of accelerator-based neutron sources is described. BNCT for common cancers will become available at medical institutes that are equipped with an accelerator-based BNCT system. Multiple metastatic lung tumors have been investigated as one of the new treatment candidates because BNCT can deliver curative doses of radiation to the tumors while sparing normal lung tissue. Further basic and clinical studies are needed to move toward an era of accelerator-based BNCT when more patients suffering from refractory cancers will be treated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call