Abstract

In this work, we explore the structure of single-wall boron nanotubes with large diameters (about 21 Å) and a broad range of surface densities of atoms. The computations are done using an evolutionary approach combined with a nearest-neighbors model Hamiltonian. For the most stable nanotubes, the number of 5-coordinated boron atoms is about 63% of the total number of atoms forming the nanotubes, whereas about 11% are boron vacancies. For hole densities smaller than about 0.22, the boron nanotubes exhibit randomly distributed hexagonal holes and are more stable than a flat stripe structure and a quasi-flat B36 cluster. For larger hole densities (>0.22), the boron nanotubes resemble porous tubular structures with hole sizes that depend on the surface densities of boron atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.