Abstract

The Bamble sector of southern Norway comprises metagabbros and metasediments that were metasomatically altered to various extents during a late stage of the Sveconorwegian orogeny (~1.06 Ga). The infiltration of highly saline brines along veins led to penetrative scapolitization and albitization on a regional scale and the local deposition of Fe–Ti oxides. Typical secondary mineral assemblages include either scapolite + apatite + amphibole + phlogopite + tourmaline, or albite + epidote + calcite + chlorite + white mica, indicating that the fluids introduced large amounts of Na, Cl, Mg, Ca, K, P, and B to the system. Metasomatic tourmalines associated with different alteration stages as identified by variations in major-element composition and initial 87Sr/86Sr were analyzed for B isotopic compositions to constrain possible sources and the evolution of the hydrothermal fluid(s). Measured δ11B values range from −5 to +27 ‰ relative to SRM-951, suggesting marine evaporites interlayered with various amounts of continental detritus and pelagic clay as a possible B source reservoir. The influence of a seawater-derived component is clearly indicated by the heavy B isotope signature of tourmaline related to Al–Mg-rich metapelites. In contrast, negative δ11B values can be explained by the influence of pneumatolytic fluids associated with granitic pegmatites. On a regional scale (i.e., several km), δ11B values in tourmaline vary widely, whereas variations within a single outcrop (tens of m) are typically small and can be ascribed to different generations of tourmaline related to several fluid pulses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call