Abstract
Serpentinite clasts and muds erupted from Conical Seamount, Mariana forearc, show substantial enrichment in boron (B) and 11B (δ 11B up to +15‰) relative to mantle values. These elevated B isotope signatures result from chemical exchange with B-rich pore fluids that are upwelling through the seamount. If the trends of decreasing δ 11B with slab depth shown by cross-arc magmatic suites in the Izu and Kurile arcs of the western Pacific are extended to shallow depths (∼25 km), they intersect the inferred δ 11B of the slab-derived fluids (+13‰) at Conical Seamount. Simple mixtures of a B-rich fluid with a high δ 11B and B-poor mantle with a low δ 11B are insufficient to explain the combined forearc and arc data sets. The B isotope systematics of subduction-related rocks thus indicate that the fluids evolved from downgoing slabs are more enriched in 11B than the slab materials from which they originate. Progressively lower δ 11B in arc lavas erupted above deep slabs reflects both the progressive depletion of 11B from the slab and progressively greater inputs of mantle-derived B. This suggests that the slab releases 11B-enriched fluids from the shallowest levels to depths greater than 200 km.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.