Abstract

The dislocation engineered approach makes use of the controlled introduction of dislocation loops into silicon substrates by conventional ion implantation and thermal processing. The dislocation loops introduce a local strain field, which modifies the band structure and provides spatial confinement of the charge carriers, thus allowing strong intrinsic silicon band-edge luminescence to be observed at room temperature. Efficient silicon-based dislocation engineered light emitting diodes were fabricated under different process conditions to study the influence of the dislocation loops formation on the luminescence properties. Electroluminescence and transmission electron microscopy techniques were used to characterise the devices and the results showed that (i) the size and density of the loops vary with boron implant energy and post-implant anneal conditions and (ii) the luminescence response from such devices can be directly related to the size and density of the dislocation loops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.