Abstract

AbstractA series of boron doped polycrystalline silicon were produced using step-by-step laser crystallization process from amorphous silicon. The influence of doping concentrations on laser- induced dehydrogenation and crystallization of amorphous silicon and on hydrogen bonding have been investigated employing Raman spectroscopy and hydrogen effusion measurements. From hydrogen effusion spectra the hydrogen chemical potential is determined as a function of hydrogen concentration, which can be related to the hydrogen density-of-states distribution. The results from hydrogen effusion are consistent with the results obtained from Raman spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.