Abstract

Boron-doped nanocrystalline silicon thin films(p-nc-Si:H) were deposited on glass substrates by plasma enhanced chemical vapour deposition (PECVD) using SiH4/ H2/ B2H6. The effects of substrate temperature, rf power and diborane flow on the microstructure, the electrical properties of nanocrystalline silicon thin films have been investigated. The results show that, increasing substrate temperature, rf power and B2H6flow can improve the conductivity of P-Si thin film. However, exceeding one value, they are not advantageous to improve the conductivity due to the decrystallization of films. Hence, appropriate process conditions are crucial for the preparation of high quality p layer. crystalline volume fraction (Xc) 26.2 %, mean grain size (d) 3.5nm and conductivity 0.374S/cm, p-nc-Si:H thin film was deposited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.