Abstract

Doping heteroatoms on carbon materials could bring some special advantages for using as catalyst support. In this work, a boron doped lamellar porous carbon (B-LPC) was prepared facilely and utilized as carbon-based support to construct Cu/B-LPC catalyst for dimethyl oxalate (DMO) hydrogenation. Doping boron could make the B-LPC own more defects on surface and bigger pore size than B-free LPC, which were beneficial to disperse and anchor Cu nanoparticles. Moreover, the interaction between Cu species and B-LPC could be strengthened by the doped B, which not only stabilized the Cu nanoparticles, but also tuned the valence of Cu species to maintain more Cu+. Therefore, the B-doped Cu/B-LPC catalyst exhibited stronger hydrogenation ability and obtained higher alcohols selectivity than Cu/LPC, as well as high stability without decrease of DMO conversion and ethylene glycol selectivity even after 300 h of reaction at 240 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call