Abstract

Sulfation at the negative electrode is one of the major failure modes of lead-acid batteries. To overcome the issues of sulfation, in this work we synthesize Boron doped graphene nanosheets as an efficient negative electrode additive for lead-acid batteries. 0.25 wt % Boron doped graphene nanosheets additive in negative electrode which contains around 3% of Boron doping shows impressive electrochemical performance in first discharge capacity, ∼60% increase the capacity in relation to the conventional lead-acid cell. Noticeably, 15–20% enhancement in the discharge capacity at lower C rates and almost double increase in capacity at higher C rates show Boron doped graphene nanosheets as a potential additive for lead-acid battery operating under high rate partial state of charge applications. The superior electrochemical performance is due to the p-type or hole conductivity of the Boron doped graphene lattice, which reduces lead sulfate formation and thereby enhances active material utilization, charge acceptance, and reduces hydrogen evolution. Besides, the high C-rate performance of Boron doped graphene nanosheets additive cell is due to the capacitive property of Boron-doped graphene nanosheets which delivers specific capacitance of 90 F g−1 at 2 A g−1 with >75% capacity retention at the end of 2000 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.